PLX233119

GSE123954: Demethylation and derepression of genomic retroelements in the skeletal muscles of aged mice

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Changes in DNA methylation influence the aging process and contribute to aging phenotypes, but few studies have been conducted on DNA methylation changes in conjunction with skeletal muscle aging. We explored the DNA methylation changes in a variety of retroelement families throughout aging (at 2, 20, and 28 months of age) in murine skeletal muscles by methyl-binding domain sequencing (MBD-seq). The two following contrasting patterns were observed among the members of each repeat family in superaged mice: (1) hypermethylation in weakly methylated retroelement copies and (2) hypomethylation in copies with relatively stronger methylation levels, representing a pattern of regression toward the mean within a single retroelement family. Interestingly, these patterns depended on the sizes of the copies. While the majority of the elements showed a slight increase in methylation, the larger copies (>5 kb) displayed evident demethylation. All these changes were not observed in T cells. RNA sequencing revealed a global derepression of retroelements during the late phase of aging (between 20-28 months of age), which temporally coincided with retroelement demethylation. Following this methylation drift trend of regression toward the mean, aging tended to progressively lose the preexisting methylation differences and local patterns in the genomic regions that had been elaborately established during the early period of development. SOURCE: Byungkuk Min (mbk0asis@gmail.com) - KRIBB

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team