PLX238609

GSE125076: A mouse model of acute post-surgical pain

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Pain is the leading cause of disability in the developed world but remains a poorly treated condition. Specifically, post-surgical pain continues to be a frequent and undermanaged condition. Here, we investigate the analgesic potential of pharmacological NaV1.7 inhibition in a mouse model of acute post-surgical pain, based on incision of the plantar skin and underlying muscle of the hind paw. We demonstrate that local and systemic treatment with the selective NaV1.7 inhibitor -theraphotoxin-Pn3a is effectively anti-allodynic in this model and completely reverses mechanical hypersensitivity in the absence of motor adverse effects. In addition, the selective NaV1.7 inhibitors ProTx-II and PF-04856264 as well as the clinical candidate CNV1014802 also reduced mechanical allodynia. Interestingly, co-administration of the opioid receptor antagonist naloxone completely reversed analgesic effects of Pn3a, indicating an involvement of endogenous opioids in the analgesic activity of Pn3a. Additionally, we found super-additive antinociceptive effects of sub-therapeutic Pn3a doses not only with the opioid oxycodone but also with the GABAB receptor agonist baclofen. Transcriptomic analysis of gene expression changes in dorsal root ganglia of mice post-surgery revealed decreased expression of several pro-nociceptive genes including N- and P/Q-type voltage-gated calcium channels important for neurotransmitter release, which suggest a reactive compensatory mechanism to reduce excessive pain similar to the endogenous opioid system. In summary, these findings suggest that pain after surgery can be successfully treated with NaV1.7 inhibitors alone or in combination with baclofen or opioids, which may present a novel and safe treatment strategy for this frequent and poorly managed condition. SOURCE: Alexander Mueller (alexander.mueller@uq.edu.au) - University of Queensland

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team