PLX267701

GSE125204: Calcium signaling controls pathogenic Th17 cell-mediated inflammation by regulating mitochondrial metabolism

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Pathogenic Th17 cells play an important role in many autoimmune and inflammatory diseases. Their function is dependent on signaling through the T cell receptor (TCR) and cytokines that activate the transcription factor signal transducer and activator of transcription 3 (STAT3). TCR engagement activates stromal interaction molecule 1 (STIM1) and calcium (Ca2+) influx through the Ca2+ release-activated Ca2+ (CRAC) channel. We here show that deletion of STIM1 and Ca2+ influx in T cells expressing a hyperactive form of STAT3 (STAT3C) attenuates pathogenic Th17 cell function and multiorgan inflammation associated with STAT3C expression. Deletion of STIM1 in pathogenic Th17 cells impairs the expression of nuclear encoded mitochondrial electron transport chain genes and oxidative phosphorylation (OXPHOS) but enhances reactive oxygen species (ROS) production. Deletion of STIM1 or inhibition of OXPHOS is associated with impaired Th17 cell function and a non-pathogenic Th17 gene expression signature. Our findings establish STIM1 and Ca2+ signals as a critical regulator of OXPHOS and oxidative stress in pathogenic Th17 cells and multiorgan inflammation. SOURCE: Tenzin,C,Lhakhang (tenzin.lhakhang@nyumc.org) - NYU School of Medicine

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team