PLX044090

GSE125603: Targeting MRTF/SRF in CAP2-dependent dilated cardiomyopathy delays disease onset

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

About one third of dilated cardiomyopathy (DCM) cases are caused by mutations in sarcomere or cytoskeletal proteins. Yet treating the cytoskeleton directly is not possible because drugs that bind to actin are not well tolerated. Mutations in the actin binding protein CAP2 can cause DCM and knockout mice, either whole body (CAP2 KO) or cardiomyocyte specific knockouts (CAP2 CKO), develop DCM with cardiac conduction disease. RNA-seq analysis of CAP2 KO hearts and isolated cardiomyocytes revealed over-activation of fetal genes including serum response factor (SRF) regulated genes such as Myl9 and Acta2 prior to the emergence of cardiac disease. To test if we could treat CAP2 KO mice, we synthesized and tested the SRF inhibitor CCG-1423-8u. CCG-1423-8u reduced expression of the SRF targets Myl9 and Acta2, as well as the biomarker of heart failure, NPPA. The median survival of CAP2 CKO mice was 98 days, while CCG-1423-8u treated CKO mice survived for 116 days and also maintain normal cardiac function longer. These results suggest that some forms of sudden cardiac death and cardiac conduction disease are under cytoskeletal stress and that inhibiting signaling through SRF may benefit DCM by reducing cytoskeletal stress. SOURCE: Jeffrey Field (xiongyao@pennmedicine.upenn.edu) - University of Pennsylvania

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team