PLX277422

GSE126772: Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

The adult mammalian heart heals after myocardial infarction (MI) by deposition of scar tissue, leading to downstream arrhythmia, remodelling and heart failure1. In contrast, adult zebrafish and neonatal mouse hearts are capable of regenerating after injury. Macrophages are key mediators of tissue repair and appear to be required for both regeneration and healing by scar formation, but the mechanisms underlying these distinct roles are poorly understood2-4. Here we investigated how macrophages differentially influence the mode of repair by determining their responses in scar-free versus scar-induced healing, comparing ventricular resection with cryo-injured adult zebrafish hearts and neonatal versus adult mouse hearts after MI. Unbiased transcriptomics revealed molecular programmes implicating macrophages in the initiation and resolution of inflammation to dictate the kinetics of scarring during zebrafish regeneration and the activation of direct and indirect pathways to drive fibrosis in the adult mouse heart. Most notably we observed up-regulation of collagen isoforms in both zebrafish and mouse macrophages following injury. Adoptive transfer of macrophages, from resected zebrafish hearts into cryo-injured hosts and splenic monocyte-derived macrophages from adult mouse donors into neonatal hearts, enhanced scar formation and induced fibrosis, respectively, via cell autonomous production of collagen. In zebrafish, macrophage-specific targeting of collagen 4a binding protein and cognate collagen 4a1 followed by transfer led to significantly reduced scarring in cryo-injured hosts, as further evidence of a direct macrophage contribution to collagen deposition and scar formation. These findings contrast with the current model of scarring, whereby collagen is laid down exclusively by myofibroblasts, and implicate macrophages as critical regulators of heart repair. SOURCE: Thomas,J,CahillRiley University of Oxford

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team