PLX251152

GSE128052: Transcriptional profile of pDyn-lineage spinal interneurons in the developing mouse

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Purpose: Mounting evidence suggests that the spinal dorsal horn (SDH) contains multiple subpopulations of inhibitory interneurons that play distinct roles in somatosensory processing, as exemplified by the importance of spinal dynorphin-expressing neurons for the suppression of mechanical pain and chemical itch. While it is clear that GABAergic transmission in the SDH undergoes significant alterations during early postnatal development, little is known about the maturation of discrete inhibitory microcircuits within the region. As a result, the goal of the present study was to elucidate the gene expression profile of spinal dynorphin (pDyn)-lineage neurons throughout life.; Methods: We isolated nuclear RNA specifically from pDyn-lineage SDH interneurons at postnatal days 7, 21, and 80 using the Isolation of Nuclei Tagged in Specific Cell Types (INTACT) technique in conjunction with Fluorescence-activated Nuclei Sorting (FANS), followed by RNAseq analysis.; Results: Over 650 genes were 2-fold enriched in adult pDyn nuclei compared to non-pDyn spinal cord nuclei, including targets with known relevance to pain such as galanin (Gal), prepronociceptin (Pnoc), and nitric oxide synthase 1 (Nos1). In addition, the gene encoding a membrane-bound guanylate cyclase, Gucy2d, was identified as a novel and highly selective marker of the pDyn population within the SDH. Differential gene expression analysis comparing pDyn nuclei across the three ages revealed sets of genes that were significantly upregulated (such as Cartpt encoding cocaine- and amphetamine-regulated transcript peptide) or downregulated (including Npbwr1 encoding the receptor for neuropeptides B/W) during postnatal development.; Conclusions: Our study represents the first detailed analysis of retinal transcriptomes, with biologic replicates, generated by RNA-seq technology. The optimized data analysis workflows reported here should provide a framework for comparative investigations of expression profiles. Our results show that NGS offers a comprehensive and more accurate quantitative and qualitative evaluation of mRNA content within a cell or tissue. We conclude that RNA-seq based transcriptome characterization would expedite genetic network analyses and permit the dissection of complex biologic functions. SOURCE: Mark,L,Baccei University of Cincinnati

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team