PLX203079

GSE128728 (mouse): Alkylating Agent-Induced ER Stress Overcomes Microenvironmental Resistance to Lymphoma Therapy

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Compartment-specific resistance to cancer therapy remains poorly understood. We utilized orthotopic xenografts of human double-hit lymphoma (DHL) to interrogate responses across involved sites. We identified resistance to multiple chemotherapies and the anti-CD52 antibody Alemtuzumab within the bone marrow (BM) that depended on extensive lymphoma involvement and impaired antibody-dependent cellular phagocytosis. This resistance was overcome by high doses of alkylating agents, including cyclophosphamide (CTX), which exhibited >80-fold in vivo synergy with Alemtuzumab. CTX induced ER stress in BM DHL cells leading to ATF4- mediated paracrine secretion of VEGF-A and massive macrophage infiltration. Macrophages from DHL-engrafted, CTX-treated mice had increased phagocytic capacity for lymphoma cells that was reversed by VEGF-A blockade and required SYK phosphorylation. A subset of these macrophages, defined by surface CD36/FcgRIV and a distinct transcriptional state, were super- phagocytic. Together, our findings define a unique mechanism through which high-dose alkylating agents can overcome therapy-resistant niches by ER stress-induced activation of phagocytosis. SOURCE: Michael Hemann (hemann@mit.edu) - Hemann Lab Massachusetts Institute of Technology

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team