PLX244118

GSE128893: SirT7 auto-ADPribosylation regulates glucose starvation response through macroH2A1.1 (RNA-seq)

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Sirtuins are key players in the response to oxidative, metabolic and genotoxic stress, and are involved in genome stability, metabolic homeostasis and aging. Originally described as NAD+-dependent deacetylases, some sirtuins are also characterized by poorly understood mono-ADP-ribosyltransferase (MADPRT) activity. Here we report that the deacetylase SirT7 is a dual sirtuin as it also features auto-MADPRT activity. Molecular and structural evidence suggests that this novel activity occurs at a second previously undefined active site that is physically separated in another domain. Specific abrogation of this activity alters SirT7 chromatin distribution, suggesting a role for this modification in SirT7 chromatin binding specificity and localization. Our studies uncover an epigenetic pathway by which ADP-ribosyl-SirT7 is recognized by the ADP-ribose reader macroH2A1.1, a histone variant involved in chromatin organization, metabolism and differentiation. Glucose starvation (GS) boosts this interaction and promotes SirT7 re-localization intergenic regions in a macroH2A1-dependent manner, which is required for specific up- or downregulation of a subset of nearby genes upon GS in primary cells and in vivo in the livers of calorie-restricted (CR) Wt and SirT7-/- mice. The level of expression of these genes decreases with age in SirT7-deficient mice, reinforcing the link between Sirtuins, CR and aging. Our work provides a novel perspective about sirtuin duality and suggests a key role for SirT7/macroH2A1.1 axis in mammalian glucose homeostasis, calorie restriction signaling and aging. SOURCE: Josh,K,Thackray (thackray@rutgers.edu) - Rutgers University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team