PLX021758

GSE129369: SMRT regulates metabolic homeostasis and adipose tissue macrophage phenotypes in tandem

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

The Silencing Mediator of Retinoid and Thyroid Hormone Receptors (SMRT) is a nuclear corepressor that regulates the transcriptional activity of many transcription factors critical for metabolic processes. While the importance of SMRTs role in the adipocyte has been well-established, prior mouse models have yielded contradictory phenotypes, limiting our understanding of its in vivo function in the context of homeostatic maintenance. Multiple models suggest that SMRT deficiency leads to increased adiposity, though the effects of SMRT loss on glucose tolerance and insulin sensitivity have been variable. We therefore generated an adipocyte-specific SMRT knockout (adSMRT-/-) mouse to more clearly define SMRTs metabolic contributions. In doing so, we found that SMRT deletion in the adipocyte does not, in fact, lead to obesity, despite increased food consumption in knockouts even when mice are challenged with a high-fat diet. This suggests that prior adiposity phenotypes described in generalized models were due to effects beyond the adipocyte. However, an adipocyte-specific SMRT deficiency still led to dramatic effects on systemic glucose tolerance and adipocyte insulin sensitivity, impairing both. This metabolically deleterious effect was coupled with a surprising immune phenotype, wherein most genes differentially expressed in the adipose tissue of adSMRT-/- mice were upregulated in pro-inflammatory pathways. Flow cytometry and conditioned media experiments demonstrated that secreted factors from knockout adipose tissue strongly informed resident macrophages to develop a pro-inflammatory, MMe (metabolically activated) phenotype. Taken together, these studies suggest a novel role for SMRT as an integrator of metabolic and inflammatory signals to effectively maintain physiological homeostasis. SOURCE: Yan Li (yli22@bsd.uchicago.edu) - The University of Chicago

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team