PLX103981

GSE131120: ANILLIN REGULATES BREAST CANCER CELL MIGRATION, GROWTH AND METASTASIS BY NON-CANONICAL MECHANISMS INVOLVING CONTROL OF CELL STEMNESS AND DIFFERENTIATION

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Breast cancer metastasis is driven by profound remodeling of the intracellular cytoskeleton enabling efficient cell migration. Anillin is a unique cytoskeletal scaffolding protein that regulates actin filaments, microtubules, septin polymers and Rho GTPases. Anillin is markedly overexpressed in breast cancer and other solid cancer, however its functions in cancer cells remain poorly understood. This study aims at investigating the roles of anillin in regulating breast cancer cell migration, invasion and metastasis. CRISPR/Cas9 technology was used to deplete anillin in highly metastatic MDA-MB-231and BT549 cells and to overexpress it in poorly invasive MCF10AneoT cells. These loss-of-function and gain-of-function studies demonstrated that anillin is necessary and sufficient to accelerate migration, invasion and anchorage-independent growth of breast cancer cells in vitro. Furthermore, loss of anillin markedly attenuated both primary tumor growth and metastasis of breast cancer in vivo. In breast cancer cells, anillin was localized in the nucleus, however anillin knockout affected the cytoplasmic/cortical events such as the organization of actin cytoskeleton and cell-matrix adhesions. This was accompanied by a global transcriptional reprogramming of anillin-depleted breast cancer cells that resulted in suppression of their stemness and induction of the mesenchymal to epithelial trans-differentiation. Such trans-differentiation was manifested by upregulation of basal keratins along with increased expression of E-cadherin and P-cadherin. Knockdown of E-cadherin reversed attenuated migration and invasion of anillin-deficient cells. Our study provides the first evidence that anillin plays causal roles in breast cancer development and metastasis in vitro and in vivo and unravels novel functions of anillin in regulating breast cancer stemness and differentiation. SOURCE: Mikhail Dozmorov (mdozmorov@vcu.edu) - Virginia Commonwealth University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team