PLX084072

GSE132357: RNA methylation maintains hematopoietic stem cell identity and symmetric commitment

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Stem cells balance cellular fates through asymmetric and symmetric divisions in order to self-renew or to generate downstream progenitors. Symmetric commitment divisions in stem cells are required for rapid regeneration during tissue damage and stress. The control of symmetric commitment remains poorly defined. N6-methyladenosine (m6A), the most abundant posttranscriptional mRNA modification controls cellular states and its abundance is dysregulated in cancer. Here we show that mRNA methylation controls symmetric commitment and cell identity of hematopoietic stem cells (HSCs). Using single-cell RNA sequencing (scRNA-seq) in combination with transcriptomic profiling of HSPCs (hematopoietic stem and progenitor cells) from control and m6A methyltransferase Mettl3 conditional knockout mice, we found that m6A-deficient HSC fail to symmetrically differentiate. Dividing HSCs are expanded and are blocked in an intermediate state that molecularly and functionally resembles multipotent progenitors. Mechanistically, RNA methylation controls Myc mRNA abundance in differentiating HSCs. Importantly, we identified MYC as a new marker for HSC asymmetric and symmetric commitment. Furthermore, forced expression of MYC rescued m6As requirement for engraftment indicating its importance in the early stage of HSC cellular fate. Overall our results indicate that RNA methylation is critical for normal blood homeostasis and may provide a general mechanism for how stem cells regulate differentiation fate choice. SOURCE: Franco Izzo (fri2002@med.cornell.edu) - Landau Weill Cornell Medicine

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team