PLX128502

GSE132533: Stat3-Bdnf-TrkB axis promotes alveolar regeneration [scRNA-seq]

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Regenerating new alveolar epithelium is essential for recovery from many lung diseases. This multi-cellular regenerative process occurs when type II alveolar pneumocytes (AT2), with support from mesenchymal niche cells, proliferate to generate more AT2 cells and transdifferentiate in type I pneumocytes. To elucidate how coordinated events between AT2 cells and mesenchyme restore alveolar epithelium we used unbiased genome-wide analysis of chromatin accessibility and gene expression in both cell types following acute lung injury. We observed that chromatin acessability in AT2 cells changes signficantly following acute lung injury. Newly accessible chromatin reveals new STAT3 binding motifs adjacent to genes that regulate essential regenerative pathways in AT2 cells. Restoration of alveolar structures following both sterile and infectious lung injuries was inhibited when STAT3 signaling was lost in AT2 cells. Single-cell transcriptome analysis of regenerating AT2 cells identified brain neurotrophic factor (Bdnf) as the sole STAT3 target gene whose chromatin becomes newly accessible in a regenerating population of AT2 cells. BDNF increased alveolar organoid size and forming efficiency in murine and human models. The receptor for BDNF, TrkB, is uniquely? expressed on mesenchymal alveolar niche cells (MANC). Exposure of BDNF to TrkB increases expression of fibroblast growth factor 7 (Fgf7), an essential regenerative cytokine, in MANCs. Blocking Bdnf signaling with a TrkB receptor antagonist abrogated murine and human alveolar organoid formation. Finally, a small molecule TrkB agonist improved functional and histological outcomes in vivo following sterile and infectious lung injuries. Collectively, these data highlight the biological and therapeutic importance of the Stat3-Bdnf-TrkB axis in orchestrating alveolar epithelial regeneration SOURCE: G,Scott,Worthen (Worthen@email.chop.edu) - Worthen Children's Hospital of Philadelphia

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team