PLX224614

GSE132958: Lentiviral CRISPR Epigenome Editing of Inflammatory Receptors as a Gene Therapy Strategy for Disc Degeneration

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Background: Degenerative disc disease (DDD) is a primary contributor to low back pain, a leading cause of disability. Progression of DDD is aided by inflammatory cytokines in the intervertebral disc (IVD), particularly TNF- and IL-1, but current treatments fail to effectively target this mechanism. The objective of this study was to explore the feasibility of CRISPR epigenome editing based therapy for DDD, by modulation of TNFR1/IL1R1 signaling in pathological human IVD cells.; Methods: Human IVD cells from the nucleus pulposus of patients receiving surgery for back pain were obtained and the regulation of TNFR1/IL1R1 signaling by a lentiviral CRISPR epigenome editing system was tested. These cells were tested for successful lentiviral transduction/expression of dCas9-KRAB system and regulation of TNFR1/IL1R1 expression. TNFR1/IL1R1 signaling disruption was investigated via measurement of NF-B activity, apoptosis, and anabolic/catabolic changes in gene expression post inflammatory challenge.; Results: CRISPR epigenome editing systems were effectively introduced into pathological human IVD cells and significantly downregulated TNFR1 and IL1R1. This downregulation significantly attenuated deleterious TNFR1 signaling but not IL1R1 signaling. This is attributed to less robust IL1R1 expression downregulation, and IL-1 driven reversal of IL1R1 expression downregulation in a portion of patient IVD cells. Additionally, RNAseq data indicated a novel transcription factor targets, IRF1 and TFAP2C, as being a primary regulators of inflammatory signaling in IVD cells.; Discussion: These results demonstrate the feasibility of CRISPR epigenome editing of inflammatory receptors in pathological IVD cells, but highlight a limitation in epigenome targeting of IL1R1. This method has potential application as a novel gene therapy for DDD, to attenuate the deleterious effect of inflammatory cytokines present in the degenerative IVD. SOURCE: Robert,Sean,Bowles (robert.bowles@utah.edu) - Bowles Lab University of Utah

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team