PLX114832

GSE133749: Human pulmonary artery endothelial cells (hPAECs) with downregulated BMPR2 signaling demonstrate a unique gene expression signature after exposure to overexpression of AdAlox5

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Bmpr2 mutations are critical risk factors for hereditary pulmonary arterial hypertension (hPAH) with approximately 20% of carriers developing disease. There is an unmet medical need to understand how environmental factors, such as inflammation, render Bmpr2 mutants susceptible to PAH. Overexpressing 5-lipoxygenase (5-LO) provokes lung inflammation and transient PAH in Bmpr2+/- mice. Accordingly, 5-LO and its metabolite, leukotriene B4 (LTB4), are candidates for the second hit. The purpose of this study was to determine how 5-LO-mediated pulmonary inflammation synergized with phenotypically-silent Bmpr2 defects to elicit significant pulmonary vascular disease in rats. Monoallelic Bmpr2 mutant rats were generated and found phenotypically normal for up to one year of observation. To evaluate whether a second hit would elicit disease, animals were exposed to 5-LO-expressing adenovirus (AdAlox5), monocrotaline, SU5416 or chronic hypoxia and analyzed. Bmpr2-mutant hPAH patient samples were assessed for neointimal 5-LO expression. Pulmonary artery endothelial cells (PAECs) were cultured with lentivirus expressing short hairpin RNA (shRNA) targeting Bmpr2 (shBmpr2) to model the impaired BMPR2 signaling, and were then exposed to 5-LO-expressing adenovirus (AdAlox5), and were assessed for phenotypic and transcriptomic changes. In vitro, BMPR2 deficiency, compounded by 5-LO-mediated inflammation, generated apoptosis-resistant and proliferative PAECs with mesenchymal characteristics. These transformed cells expressed nuclear envelop-localized 5-LO consistent with induced LTB4 production, as well as a transcriptomic signature similar to clinical disease, including upregulated NF-kB, IL-6 and TGF- signaling pathways. The reversal of PAH and vasculopathy in Bmpr2 mutants by TGF- antagonism suggests that TGF- is critical for neointimal transformation. Thus, in a new two-hit model of disease, lung inflammation induced severe PAH pathology in Bmpr2+/- rats. Endothelial transformation required the activation of canonical and noncanonical TGF- signaling pathways and was characterized by 5-LO nuclear envelope translocation with enhanced LTB4 production. This study offers one explanation of how an environmental injury unleashes the destructive potential of an otherwise-silent genetic mutation. SOURCE: Peter Kao (peterkao@stanford.edu) - Stanford University School of Medicine

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team