PLX008071

GSE134506: Lineage tracing of acute myeloid leukemia reveals the impact of hypomethylating agents on chemoresistance selection

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Chemotherapy-resistant cancer recurrence is a major cause of mortality. In acute myeloid leukemia (AML), chemorefractory relapses result from the complex interplay between altered genetic, epigenetic and transcriptional states in leukemic cells. We developed an experimental model system using in vitro lineage tracing coupled with exome, transcriptome and in vivo functional readouts to assess the AML population dynamics and associated molecular determinants underpinning chemoresistance development. We found that combining standard chemotherapeutic regimens with low doses of DNA methyltransferase inhibitors (DNMTi, hypomethylating drugs) prevents chemoresistant relapses. Mechanistically, DNMTi suppressed the outgrowth of a pre-determined set of chemoresistant AML clones with stemness properties, instead favoring the expansion of rarer and unfit chemosensitive clones. Importantly, we confirmed the capacity of DNMTi combination to suppress stemness-dependent chemoresistance development in both xenotransplantation models and primary AML patient samples. Together, these results support the potential of DNMTi combination treatment to circumvent the development of chemorefractory AML relapses. SOURCE: Francisco Caiado (caiado12@gmail.com) - Instituto de Medicina Molecular

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team