PLX295476

GSE135406: Comparative transcriptomic and epigenomic analysis identifies key regulators of injury response and neurogenic competence in retinal glia

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Injury induces retinal Muller glia of non-mammalian, but not mammalian, vertebrates to generate neurons. To identify gene regulatory networks that control neurogenic competence in retinal glia, we used bulk and single-cell RNA-seq and ATAC-seq analysis to comprehensively profile gene expression and chromatin conformation in Muller glia from zebrafish, chick and mice. This was conducted during glial development, following inner and outer retinal injury, as well as following treatment with extrinsic factors that induce glial reprogramming. Integration of these data, together with functional analysis of candidate genes, identified evolutionarily conserved and species-specific gene regulatory networks controlling glial quiescence, gliosis, and neurogenic competence. In zebrafish and chick, transition from quiescence to gliosis is a necessary stage in acquisition of neurogenic competence, while in mice a dedicated network suppresses this transition and rapidly restores quiescence. These findings may help guide the design of cell-based therapies aimed at restoring retinal neurons lost to disease. SOURCE: Jie Wang (jwang240@jhmi.edu) - Johns Hopkins University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team