PLX116732

GSE135838: Transcriptomic Profiles of Sepsis in the Human Brain

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

The purpose of this study is to examine the transcriptomic profiles (RNAseq) of post-mortem brain tissue samples from patients who have died of sepsis compared to non-sepsis controls using two analytic approaches. Tissue samples originated from the Adult Changes in Thought study (ACT) brain bank. In order to determine cause of death, hospital charts for 89 ACT subjects who died while hospitalized were reviewed using a structured instrument for diagnosis of sepsis. RNA was extracted from 24 post-mortem parietal cortex tissue samples. RNA sequencing was performed on the 24 samples using Illumina's Hi-Seq platform. Raw data was exported, pre-processed, and analyzed by two methods, differential expression and weighted gene co-expression network analysis (WGCNA). 176 genes were differentially expressed with fold change of > 1.5 and adjusted p < 0.5. The top differentially expressed genes were immune-related. WGCNA reveled 6 modules were significantly correlated with sepsis. Significant nodules were enriched in terms associated with innate immunity, cytokines, DAMPs, synaptic function, ion channel function, neuronal growth, and T-cell signalling among others. These data suggest sepsis is associated with specific transcriptional responses in the human brain. These results provide support for previously identified targets as well as provide evidence to suggest investigation into new targets for mechanistic exploration of sepsis-associated brain injury. SOURCE: Benjamin,H.,Singer (singerb@med.umich.edu) - 4868 BSRB University of Michigan

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team