PLX075910

GSE137216: CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention [ChIP-seq & RNA-seq]

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

The DNA-binding protein CTCF and the cohesin complex function together to shape chromatin architecture in mammalian cells, but the molecular details of this process remain unclear. We demonstrate that a 79 amino acid region within the CTCF N-terminal domain but not the C-terminus is necessary for cohesin positioning at CTCF binding sites and chromatin loop formation. However, the N-terminus of CTCF, when fused to artificial zinc fingers that do not bind to CTCF DNA binding sites was not sufficient to redirect cohesin to different genomic locations, indicating that cohesin positioning by CTCF does not involve direct protein-protein interactions with cohesin subunits. BORIS (CTCFL), a germlinespecific paralog of CTCF was unable to anchor cohesin to CTCF DNA binding sites. Furthermore, CTCF-BORIS Chimeric constructs provided evidence that both the first two CTCF zinc fingers and, likely, the 3D geometry of CTCF-DNA complexes are involved in cohesin retention. Moreover, we were able to convert BORIS into CTCF with respect to cohesin positioning, thus providing additional molecular details of the cohesin retention function of CTCF. Our data suggest that the N-terminus of CTCF and the 3D spatial conformation of the CTCF-DNA complex act as a roadblock to constrain cohesin movement along DNA. SOURCE: Elena Pugacheva (epugacheva@niaid.nih.gov) - LIG NIH

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team