PLX019684

GSE137646: TET1 is a tumour suppressor that inhibits bladder cancer progression

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Ten-Eleven Translocation 1 (TET1) is a member of methylcytosine dioxygenase, which catalyse 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) that promote the demethylation process. The diminished expression of TET1 protein and 5-hmC in many tumors indicate a critical role for the maintenance of cell stability. However, role of TET1 in bladder cancer development remains unclear. Here we found that TET1 expression was downregulated in bladder cancer tissues compared with normal urothelium and was inversely related to patient overall survival. TET1 silencing in bladder cancer cells increase proliferation and inhibited cell migration and invasion while its re-expression inhibits their proliferation and the growth of tumor xenografts. Furthermore, we found that TET1 binds to the promoter of the TSG to maintain its hypomethylated which interacts with -catenin and suppress its nuclear translocation, thus inhibiting -catenin transcriptional activity and downstream genes. In conclusion, TET1 acts as a tumor suppressor gene in bladder cancer cells by suppressing -catenin signaling. This study may facilitate efforts to therapeutic strategy for patients with bladder cancer. SOURCE: Yilin Yan (yyl718@sjtu.edu.cn) - Shanghai General Hospital

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team