PLX056796

GSE138771: Loss of microRNA-21 in K-Ras-driven mouse models of pancreatic cancer

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

The microenvironment of pancreatic cancer adenocarcinoma (PDAC) is highly desmoplastic with distinct tumor-restraining and tumor-promoting fibroblast subpopulations. Re-education rather than indiscriminate elimination of these fibroblasts has emerged as a new strategy for combination therapy. Here, we studied the effects of global loss of pro-fibrotic non-coding regulatory microRNA-21 (miR-21) in K-Ras-driven p53-deleted genetically engineered mouse models of PDAC. Strikingly, loss of miR-21 accelerated tumor initiation via mucinous cystic neoplastic lesions and progression to locally advanced invasive carcinoma from which animals precipitously succumbed at an early age. The absence of tumor-restraining myofibroblasts and a massive infiltrate of immune cells were salient phenotypic features of global miR-21 loss. Stromal miR-21 activity was required for induction of tumor-restraining myofibroblasts in in-vivo isograft transplantation experiments. Low miR-21 expression negatively correlated with a fibroblast gene expression signature and positively with an immune cell gene expression signature in TCGA PDAC data set (n = 156) mirroring findings in the mouse models. Our results exposed an overall tumor suppressive function of miR-21 in in-vivo PDAC models. These results have important clinical implications for anti-miR-21-based inhibitory therapeutic approaches under consideration for PDAC and other cancer types. Mechanistic dissection of the cell-intrinsic role of miR-21 in cancer-associated fibroblasts and other cell types will be needed to inform best strategies for pharmacological modulation of miR-21 activity in order to remodel the tumor microenvironment and enhance treatment response in PDAC. SOURCE: Ian Beddows (ian.beddows@vai.org) - Van Andel Institute

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team