PLX277273

GSE138937: Effect of CTCF and Rad21 knockdown on SLK cells and KSHV gene expression

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

CTCF and the cohesin complex modify chromatin by binding to DNA and interacting with each other and with other cellular proteins. Both proteins regulate transcription by a variety of local effects on transcription and by long range topological effects. CTCF and cohesin also bind to herpesvirus genomes at specific sites and regulate viral transcription during latent and lytic cycles of replication. Kaposis sarcoma-associated herpesvirus (KSHV) transcription is regulated by CTCF and cohesin, with both proteins previously reported to act as restrictive factors for lytic cycle transcription and virion production. In this study, we examined the interdependence of CTCF and cohesin binding to the KSHV genome. ChIP-seq analyses revealed that cohesin binding to the KSHV genome is highly CTCF dependent whereas CTCF binding does not require cohesin. Further, depletion of CTCF leads to almost complete dissociation of cohesin from sites at which they colocalize. Thus, previous studies which examined the effects of CTCF depletion actually represent concomitant depletion of both CTCF and cohesin components. Analysis of the effects of single and combined depletion indicate that CTCF primarily activates KSHV lytic transcription whereas cohesin has primarily inhibitory effects. Further, CTCF or cohesin depletion was found to have regulatory effects on cellular gene expression relevant for control of viral infection, with both proteins potentially facilitating expression of multiple genes important in the innate immune response to viruses. Thus, CTCF and cohesin have both positive and negative effects on KSHV lytic replication as well as effects on the host cell that enhance antiviral defenses. SOURCE: Chris Stubben Huntsman Cancer Institute

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team