PLX291103

GSE139812: Regulated snoRNA expression during differentiation corresponds with a change in ribosomal RNA pseudouridylation and altered pre-ribosomal RNA processing [RNA-seq and ncRNA-seq]

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

H/ACA small nucleolar RNAs (snoRNAs) guide pseudouridylation as part of a small nucleolar ribonucleoprotein complex (snoRNP). Disruption of H/ACA snoRNA expression in stem cells impairs pluripotency, yet it remains unclear how H/ACA snoRNAs contribute to differentiation. To determine if H/ACA snoRNA expression is dynamic during differentiation, we comprehensively profiled H/ACA snoRNA expression in multiple murine cell types and during differentiation in three cellular models, including mouse embryonic stem cells and mouse myoblasts. We determined that H/ACA snoRNA expression is cell-type specific, and we identified a subset of snoRNAs that are specifically regulated during differentiation. Additionally, we demonstrated that a decrease in Snora27 expression upon differentiation corresponds to a decrease in pseudouridylation of its target site within the E-site transfer RNA (tRNA) binding region of the 28S ribosomal RNA (rRNA) in the large ribosomal subunit. Many of the snoRNAs regulated during differentiation have target nucleotides in the 28S rRNA, and we found that pre-rRNA processing of large subunit precursors is altered during differentiation. Together, these data suggest a model in which H/ACA snoRNAs are specifically regulated during differentiation to potentially alter pseudouridylation and fine tune ribosome function. SOURCE: Kathleen McCann (kathleen.mccann2@nih.gov) - National Institute of Environmental Health Sciences

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team