PLX300824

GSE139932: Profiling of RNAs from human islet-derived exosomes in a model of type 1 diabetes

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Type 1 diabetes (T1D) is characterized by immune mediated destruction of insulin producing cells. Biomarkers capable of identifying T1D risk and dissecting disease-related heterogeneity represent an unmet clinical need. Aims: Towards the goal of informing T1D biomarker strategies, we profiled different classes of RNAs in human islet-derived exosomes and identified RNAs that were differentially expressed under cytokine stress conditions. Human pancreatic islets were obtained from cadaveric donors and treated with/without IL-1 and IFN- to mimic the pro-inflammatory T1D milieu. Total RNA and small RNA sequencing were performed to identify long (mRNA and long non-coding RNAs) and different classes of small non-coding RNAs. RNAs with fold change 1.3 and p-value < 0.05 were considered as differentially expressed. mRNAs and miRNAs species represented the most abundant long and small RNA species, respectively. Expression patterns of each class of RNA were changed with cytokine treatment. Differentially expressed long RNAs and targets of small non-coding RNAs were predicted to be involved in insulin secretion, calcium signaling, necrosis and apoptosis. Our data provides the first comprehensive catalog of protein coding and non-coding RNAs in human islet-derived exosomes and identifies RNAs that are dysregulated under cytokine stress. SOURCE: Carmella Evans-Molina (cevansmo@iupui.edu) - Indiana University School of Medicine

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team