PLX160102

GSE141186: H1 linker histones regulate the balance of repressive and active chromatin domains via localized genomic compaction [RNA-seq]

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

H1 linker histones are the most abundant chromatin binding proteins. Their association with chromatin determines the spacing between nucleosomes and enables arrays of nucleosomes to fold into more compact chromatin structures. Mammals express multiple H1 proteins and are able to compensate for the loss of one or even two members by increasing synthesis of other members to maintain a constant H1 to nucleosome stoichiometry. To study the role of H1 in mammalian development, we generated a conditional triple H1 knockout (H1cTKO) mouse strain that enables depletion of H1 in specific cell types. Here, we report on the effects of depleting H1 in adult hematopoietic cells. Deletion of the genes encoding three widely expressed H1 subtypes (H1c, H1d, and H1e) has particularly profound effects on B- and T- lymphocyte development. H1 depletion leads to de-repression of T-cell activation genes, and a shift in T-cells towards effector functions, a process that mimics normal T-cell activation. Comparison of chromatin structure in normal and H1-depleted CD8+ T-cells revealed that H1 binding produces localized chromatin compaction within spatially defined chromatin domains containing above average levels of H1. Reduction of H1 stoichiometry in these regions leads to decreases in H3K27 methylation and increases in H3K36 methylation. In vitro, H1 promotes PRC2-mediated H3K27 methylation and inhibits NSD2-mediated H3K36 methylation. Mechanistically, H1 mediates these opposite effects by promoting physical compaction of the chromatin substrate. These findings identify H1 as a critical regulator of the epigenetic landscape in mammalian cells. SOURCE: Boris Bartholdy Albert Einstein College of Medicine

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team