PLX187899

GSE141323: A Tissue-Specific Tankyrase Inhibitor Drives Key Developmental and Oncogenic Pathways

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Tissue-specific regulation of WNT and YAP/TAZ signaling is critical for optimal organismal growth, development, and maintenance. Uncontrolled activity often leads to developmental abnormalities and aggressive cancers. Tankyrase (TNKS) is a poly-ADP-ribose polymerase (PARP) that controls both WNT and YAP/TAZ signaling. However, it is unclear how TNKS activity is regulated in a tissue and cell-type specific manner. Here, we identified the previously uncharacterized prostate-associated gene 4 (PAGE4) as a tissue-specific TNKS inhibitor. Structural and biochemical studies revealed that mechanistically PAGE4 inhibits TNKS through hijacking TNKS substrate binding pockets leading to the stabilization of TNKS substrates. In vitro cell culture and in vivo zebrafish and transgenic mouse model studies showed that PAGE4 is a potent inhibitor of TNKS and WNT signaling. Interestingly, PAGE4 is physiologically restricted to expression in select tissues and cell types, including WNT producing prostatic fibroblasts where spatiotemporal regulation of WNT signaling is critical for proper organ development. Surprisingly, PAGE4 is aberrantly expressed in hepatocellular carcinomas that bypass TNKS through mutant CTNNB1 driven WNT signaling. In vitro and in vivo tumorigenic studies revealed that PAGE4 initially function as a tumor suppressor through inhibition of WNT signaling, but upon CTNNB1 mutation becomes an oncogenic driver through YAP/TAZ signaling. Thus, we establish PAGE4 as a robust tissue-specific TNKS inhibitor that physiologically coordinates developmental WNT signaling, but genetic aberration during cancer progression re-wire PAGE4 into pro-oncogenic YAP/TAZ pathway. SOURCE: David Finkelstein (david.finkelstein@stjude.org) - St Jude Children's Research Hospital

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team