PLX212990

GSE141446: Transcriptomic profiles of host epithelial cells in response to actin rearrangement induced by atypical enteropathogenic Escherichia coli

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Atypical enteropathogenic Escherichia coli (aEPEC) is amongst the leading causes of diarrheal disease worldwide. The colonization of the gut mucosa by aEPEC results in actin pedestal formation at the site of bacterial attachment. This cytoskeletal rearrangement is triggered by the interaction between the bacterial adhesin intimin and its receptor Tir, which is translocated through the type three secretion system, to the host cell. While some aEPEC require tyrosine phosphorylation of Tir and recruitment of the host Nck to trigger actin polymerization, certain aEPEC strains, whose Tir is not phosphorylated, rely on the effector EspFu for efficient actin remodeling. To understand how the host responds to these different actin polymerization signaling pathways, we analyzed gene expression changes in epithelial cells infected with pedestal-forming aEPEC strains using high-throughput RNA sequencing (RNA-seq). SOURCE: Fernando,Henrique,Martins (fernando.martins@utsouthwestern.edu) - Sperandio Lab University of Texas Southwestern Medical Center

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team