PLX031886

GSE142325: Comparison of multiple passages of VEEV V4020 to VEEV TC-83 at 2 days after intracranial inoculation in BALB/c mice

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Experimental V4020 is derived from VEEV TC-83, a vaccine with a long track record of use in lab and military personnel at risk. V4020 was generated from an infectious DNA clone, secured genetic stability by employing stabilizing mutation at position 120 in the E2 protein, and by rearrangement of structural genes. In this study, serial passages in brain tissues of mice were performed to compare safety and genetic stability of V4020 and TC-83 experimental vaccines. During five serial passages in brain, less severe clinical manifestations and lower viral load were observed in V4020 mice and all animals survived. In contrast, 13.3% of mice met euthanasia criteria during the passages in TC-83 group. At 2 DPI, RNA-Seq analysis of brain tissues revealed that V4020 mice had lower rates of mutations throughout five passages. Higher synonymous mutation ratio was observed in the nsP4 (RdRP) gene of TC-83 compared to V4020 mice. At 2 DPI, both viruses induced different expression profiles of host genes involved into neuro-regeneration. Taken together, these results provide evidence for the improved safety and genetic stability of the experimental V4020 VEEV vaccine in a murine model. While no single nucleotide polymorphisms that have been previously linked to virulence were identified, more neuro-virulence markers were observed in serial passaged TC-83 compared to V4020. This study suggests a complex polygenic basis for neuro-virulent reversion in VEEV live attenuated vaccines and provides evidence for the advanced safety and genetic stability of V4020. SOURCE: Dylan,MacGregor,Johnson (dylan.johnson@louisville.edu) - Lab of Igor S. Lukashevich University of Louisville, School of Medicine

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team