PLX139840

GSE143320: Methionine metabolism shapes T helper cell responses through regulation of epigenetic reprogramming [RNA-Seq]

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Epigenetic modifications on DNA and histones regulate gene expression by modulating chromatin accessibility to transcription machinery. Chromatin-modifying enzymes are dependent on metabolic intermediates for chromatin remodeling, linking nutrient availability and cellular metabolism to the cellular epigenetic landscape. Here we identify methionine as a key nutrient affecting T cell epigenetic reprogramming in CD4+ T helper (Th) cells. Using metabolomic approaches, we showed that methionine is rapidly taken up by activated T cells and then serves as the major substrate for the biosynthesis of S-adenosyl-L-methionine (SAM), the universal methyl donor for cellular methyltransferases. Conversely, methionine restriction (MR) depletes intracellular SAM pools, reduces global histone H3K4 methylation (H3K4me3) in T cells, and reduces H3K4me3 levels at the promoter regions of key genes involved in CD4+ Th17 cell proliferation and cytokine production. Applied to the mouse model of multiple sclerosis (experimental autoimmune encephalomyelitis), dietary methionine restriction reduced the expansion of pathogenic Th17 cells in vivo, leading to reduced T cell-mediated neuroinflammation and disease onset. Overall our data identify methionine as a key nutritional factor that shapes T cell proliferation, differentiation, and function in part through regulation of histone methylation in T cells. SOURCE: Russell Jones (russell.jones@vai.org) - Van Andel Institute

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team