PLX154631

GSE143447: Role of TET1 Mediated 5hmC in Osteoarthritis [RNA-seq]

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

No disease-modifying drugs exist to treat osteoarthritis (OA), a degenerative disease of the joint. The complexity of OA necessitates a combinational and broad therapeutic approach. Epigenetic regulators are able to control large programs of genes, and recent work from our group and others have showcased systemic epigenetic dysregulation in OA. Previously, we demonstrated that OA chondrocytes accumulate 5-fold more 5-hydroxymethylcytosine (5hmC), an oxidized derivative of methylcytosine (5mC) associated with gene activation, at disease relevant sites. To test if 5hmC has a role in the early onset of OA, we utilized a mouse model of surgically induced OA, destabilization of the medial meniscus (DMM), and found that DMM mice gained ~40,000 differentially hydroxymethylated sites. Genetic loss of TET1, the enzyme responsible for 5hmC deposition, prevented pathologic gain of 5hmC, activation of many OA pathways, and protected mice from OA development. To test the clinical potential of a TET1 based OA therapy, we injected 2-hydroxyglutarate (2-HG), a TET inhibitor, into the joint after DMM induction and observed stalled disease progression. Collectively, these data show that TET1 mediated 5hmC deposition regulates multiple OA pathways and that its modulation can be a powerful clinical tool for OA. SOURCE: Fiorella Grandi (fgrandi@stanford.edu) - Bhutani Stanford University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team