PLX195335

GSE143912: Transcriptome of wildtype and Meis2 mutant in the developing palate

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

We useRNA-sequencing to profile the different expression genes in the palatal mesenchyme of wildtype and Wnt1Cre;Meis2f/f mice at E12.5.; Haploinsufficiency of MEIS2 is associated with cleft palate in humans and Meis2 inactivation leads to abnormal palate development in mice, implicating an essential role for Meis2 in palate development. However, its functional mechanisms remain unknown. In this study, we found widespread Meis2 expression in the developing palate in mice. Meis2 inactivation by Wnt1Cre in cranial neural crest cells led to the cleft of the secondary palate. Importantly, about half of Wnt1Cre;Meis2f/f mice exhibited submucous cleft, providing an excellent model for studying palatal bone formation and patterning. Consistent with a complete absence of the palatal bones, integrative analyses of Meis2 ChIP-seq, RNA-seq, and ATAC-seq results identified key osteogenic genes that are regulated directly by Meis2, indicating the fundamental role of Meis2 in palatal osteogenesis. De novo motif analysis discovered that the Meis2-bound regions possess highly enriched binding motifs of several key osteogenic transcription factors particularly Shox2. Comparison of Meis2 and Shox2 ChIP-seq analyses further revealed a genome-wide co-occupancy, in addition to their co-localization in the developing palate and physical interaction, suggesting that Shox2 and Meis2 act as partners. However, while Shox2 is required for proper palatal bone formation and is a direct downstream target of Meis2, Shox2 overexpression failed to rescue the palatal bone defects in Meis2 mutant background. These results, together with the facts that Meis2 expression is associated with high osteogenic potential and is required for the chromatin accessibility of osteogenic genes, support a vital function of Meis2 in setting up the ground state for palatal osteogenesis. SOURCE: Linyan Wang (lwang28@tulane.edu) - Tulane University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team