PLX290327

GSE144587: A subpopulation of Periostin-expressing fibroblasts is required for cardiac muscle and neuronal maturation after birth

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

During the postnatal period in mammals, the cardiac muscle transitions from hyperplasic to hypertrophic growth, the extracellular matrix (ECM) undergoes remodeling, and the heart loses regenerative capacity. While ECM maturation and crosstalk between cardiac fibroblasts (CFs) and cardiomyocytes (CM) have been implicated in neonatal heart development, not much is known about specialized fibroblast heterogeneity and functions in the early postnatal period. In order to better understand CF functions in heart maturation and postnatal cardiomyocyte cell cycle arrest, we have performed gene expression profiling and ablation of postnatal CF subpopulations. Fibroblast lineages expressing Tcf21 or Periostin were traced in transgenic GFP reporter mice and their biological functions and transitions during the postnatal period were examined in sorted cells using RNAseq. A subpopulation of highly proliferative Periostin (Postn)+ CFs was found from postnatal day (P)1 to P11 but was not detected at P30. This population was less abundant and transcriptionally different from Tcf21+ resident CFs, which persist in the mature heart. The Postn+ subpopulation preferentially expresses genes related to cell proliferation and neuronal development, while Tcf21+ CFs differentially express genes related to ECM maturation at P7 and immune crosstalk at P30. Ablation of the Postn+ CFs from P0 to P6 led to altered cardiac sympathetic nerve patterning and a reduction in CM binucleation, maturation, and hypertrophic growth. Thus, postnatal CFs are heterogeneous and include a transient proliferative Postn+ subpopulation required for cardiac nerve development and cardiomyocyte maturation soon after birth. SOURCE: KATHERINE YUTZEY (katherine.yutzey@cchmc.org) - CINCINNATI CHILDREN'S HOSPITAL

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team