PLX307830

GSE144825: Human-chimpanzee cell fusion reveals cis-regulatory evolution of neural development

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Among primates, humans display a unique trajectory of development responsible for the many traits specific to our species. However, the inaccessibility of human and chimpanzee primary tissues has limited our ability to study human evolution. Comparative in vitro approaches using primate-derived induced pluripotent stem cells have begun to reveal species differences on the cellular and molecular levels. In particular, brain organoids have emerged as a promising platform to study primate neural development in vitro, although cross-species comparisons of organoids are complicated by differences in developmental timing and variability of differentiation. Here, we developed a new platform to address these limitations. We first generated a panel of tetraploid hybrid stem cells by fusing human and chimpanzee induced pluripotent stem cells. We next applied this approach to study species divergence in cerebral cortical development by differentiating them into neural organoids. We found that hybrid organoids provide a controlled system for disentangling cis- and trans-acting gene expression divergence across cell types and developmental stages, revealing a signature of selection on astrocyte-related genes. In addition, we identified an up-regulation of human somatostatin receptor 2 (SSTR2), which regulates neuronal calcium signaling and is associated with neuropsychiatric disorders. We discovered a human-specific response to modulation of SSTR2 function in cortical neurons, underscoring the potential of this unique platform to reveal the molecular basis of human evolution. SOURCE: Rachel Agoglia Stanford University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team