PLX112977

GSE145274: Mechanistic basis and efficacy of targeting Beta Catenin-TCF7L2-JMJD6-MYC Axis to overcome resistance to BET inhibitors [OTX015]

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Promising activity of BET protein inhibitors (BETis) is compromised by adaptive or innate resistance in AML. Here, modeling of BETi- persister/resistance (BETi-P/R) in human post-MPN secondary AML (sAML) cells demonstrated accessible and active chromatin in specific super-enhancers/enhancers, which was associated with increased levels of nuclear -catenin, TCF7L2, JMJD6, and c-Myc in BETi-P/R sAML cells. Following BETi treatment, c-Myc levels were rapidly restored in BETi-P/R sAML cells. CRISPR/Cas9-mediated knockout of TCF7L2 or JMJD6 reversed BETi-P/R, whereas ectopic overexpression conferred BETi-P/R in sAML cells; confirming the mechanistic role of the -catenin-TCF7L2- JMJD6-MYC axis in BETi-resistance. Patient-derived, post-MPN, CD34+ sAML blasts exhibiting relative resistance to BETi, as compared to sensitive sAML blasts, displayed higher mRNA and protein expressions of TCF7L2, JMJD6 and c-Myc, and following BETi washout exhibited rapid restoration of c-Myc and JMJD6. CRISPR/Cas9 knockout of TCF7L2 and JMJD6 depleted their levels, inducing loss of viability of the sAML blasts. Disruption of co-localization of nuclear -catenin with TBL1 and TCF7L2 by the small molecule inhibitor BC2059 combined with depletion of BRD4 by BET-PROTAC reduced c-Myc levels and exerted synergistic lethality in BETi-P/R sAML cells. This combination also reduced leukemia burden and improved survival of mice engrafted with BETi-P/R sAML cells or with patient-derived AML blasts innately resistant to BETi. Therefore, multi- targeted disruption of -catenin-TCF7L2-JMJD6-MYC axis overcomes adaptive and innate BETi-resistance, exhibiting pre-clinical efficacy against human post-MPN sAML cells. SOURCE: Kapil Bhalla MD Anderson Cancer Center

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team