PLX111838

GSE145284: The omentum of obese girls harbors small adipocytes and browning transcrips

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Severe obesity (SO) affects about 6% of youth in US, augmenting the risks for cardiovascular disease and Type 2 diabetes. Herein, we obtained paired omental (omVAT) and abdominal subcutaneous (SAT) adipose tissue biopsies from obese girls with SO, undergoing sleeve gastrectomy (SG), to test whether differences in cellular and transcriptomic profiles between omVAT and SAT depots affect insulin sensitivity differentially. Following weight loss, these analyses were repeated in a subgroup of subjects having a second SAT biopsy. We found that omVAT displayed smaller adipocytes compared to SAT, increased lipolysis through adipose triglyceride lipase (ATGL) phosphorylation, reduced inflammation and increased expression of browning/beige markers. Contrary to omVAT, SAT adipocyte diameter correlated with insulin resistance. Following SG, both weight and insulin sensitivity improved markedly in all subjects. SAT adipocytes size became smaller showing an increased lipolysis through perilipin-1 phosphorylation, decreased inflammation and increased expression in browning/beige markers. In summary, in adolescent girls with SO, both omVAT and SAT depots showed distinct cellular and transcriptomic profiles. Following weight loss, the SAT depot changed its cellular morphology and transcriptomic profiles into a more favorable one. These changes in the SAT depot may play a fundamental role in the resolution of insulin resistance. SOURCE: Elena Tarabra (elena.tarabra@yale.edu) - Yale University - School of Medicine

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team