PLX028864

GSE146867: RNA editing enzyme APOBEC3A promotes pro-inflammatory (M1) macrophage polarization

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Macrophages acquire a pro-inflammatory M1 phenotype in response to microbial products or pro-inflammatory cytokines through incompletely understood molecular mechanisms. We recently described the induction of APOBEC3A-mediated cellular site-specific cytosine-to-uracil (C>U) RNA editing during M1 macrophage polarization. However, the functional significance of this RNA editing is unknown. Here, we find that cellular RNA editing by APOBEC3A can also be induced by influenza or Maraba virus infections in normal macrophages, and by interferons in tumor-associated macrophages. Gene knockdown and RNA Seq analyses show that APOBEC3A induces C>U RNA editing (range 7%-88%) of 209 exonic or UTR sites in 203 genes during M1 polarization of monocyte-derived macrophages. The highest level of deleterious protein-recoding C>U RNA editing is observed in THOC5, which encodes a key nuclear protein implicated in the export of mRNAs during M-CSF driven macrophage differentiation. Knockdown of APOBEC3A in M1 macrophages reduces pro-inflammatory IL6, IL23A, and IL12B gene expression, CD80 and CD86 surface protein expression, and TNF-, IL-1 and IL-6 cytokine secretion, and increases glycolysis and glycolytic capacity. These results demonstrate that APOBEC3A cytidine deaminase plays an important role in transcriptomic and functional polarization of pro-inflammatory M1 macrophages. SOURCE: Eduardo Cortes (eduardo.cortesgomez@roswellpark.org) - ROSWELL PARK CANCER INSTITUTE

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team