PLX084121

GSE148051: Hematopoietic stem cells acquire survival advantage by loss of RUNX1 methylation identified in familial leukemia

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

RUNX1 is among the most frequently mutated genes in human leukemia, and the loss or dominant-negative suppression of RUNX1 function is found in myelodysplastic syndrome and acute myeloid leukemia (AML). However, how post-translational modifications (PTMs) of RUNX1 affect its in vivo function and whether PTM dysregulation of RUNX1 can cause leukemia are largely unknown. We performed targeted deep sequencing on a family with 3 occurrences of AML and identified a novel RUNX1 mutation R237K. The mutated R237 residue is a methylation site by PRMT1 and loss of methylation has been reported to impair transcriptional activity of RUNX1 in vitro. To explore biological significance of RUNX1 methylation in vivo, we utilized RUNX1 R233K/R237K double mutant mice, in which 2 arginine-to-lysine mutations precluded RUNX1 methylation. Genetic ablation of RUNX1 methylation led to loss of quiescence and expansion of hematopoietic stem cells (HSCs), and changed the genomic and epigenomic signature of phenotypic HSCs to a poised progenitor state. Further, loss of RUNX1 R233/R237 methylation suppressed endoplasmic reticulum stress-induced unfolded protein response genes including Atf4, Ddit3, and Gadd34, radiation-induced p53 downstream genes, Bbc3, Pmaip1, and Cdkn1a, and subsequent apoptosis in HSCs. Mechanistically, ATF4 was identified as a direct transcriptional target of RUNX1. Collectively, defects in RUNX1 methylation in HSCs confer resistance to apoptosis and survival advantage under stress conditions, a hallmark of a pre-leukemic clone which may predispose affected individuals to leukemia. Our study will lead to a better understanding of how dysregulation of PTMs can contribute to leukemogenesis. SOURCE: Takayoshi Matsumura National University of Singapore

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team