PLX092508

GSE148066: Integration of Innate 1 Immune Signaling by Caspase-8-Mediated Cleavage of N4BP1 (NGS2979 RNA-seq)

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Human mutations in the death receptor Fas or its ligand FasL cause autoimmune lymphoproliferative syndrome (ALPS), whereas mutations in caspase-8 or its adaptor FADD which mediate cell death downstream of Fas/FasL cause severe immunodeficiency in addition to ALPS. Mouse models have corroborated a role for FADD-caspase-8 in promoting inflammatory responses, but the mechanisms underlying immunodeficiency remain undefined. Here, we identify NEDD4-binding protein 1 (N4BP1) as a suppressor of cytokine production; that is cleaved and inactivated by caspase-8. N4BP1 deletion in mice significantly increased production of select cytokines upon Toll-like receptor (TLR) 1/2, TLR7, or TLR9 stimulation, but not upon TLR3 or TLR4 engagement. N4BP1 did not suppress TLR3 or TLR4 responses in wild-type macrophages owing to TRIF- and caspase-8-dependent cleavage of N4BP1. Notably, impaired TLR3 and TLR4 cytokine responses of caspase-8-deficient macrophages were largely rescued by co-deletion of N4BP1. Thus, persistence of intact N4BP1 in caspase-8-deficient macrophages impairs their ability to mount robust cytokine responses. Tumor necrosis factor (TNF), like TLR3 or TLR4 agonists, also induced caspase-8-dependent cleavage of N4BP1, thereby licensing TRIF-independent TLRs to produce higher levels of inflammatory cytokines. Illustrating the importance of this function of TNF in vivo, TNF blockade increased the mortality of mice infected with Streptococcus Pneumoniae, but did not do so when infected mice lacked N4BP1. Collectively, our results identify N4BP1 as a potent suppressor of cytokine responses; reveal N4BP1 cleavage by Caspase-8 as a point of signal integration during inflammation; and offer an explanation for immunodeficiency caused by FADD-caspase-8 mutations. SOURCE: Rohit Reja (rejar@gene.com) - Genentech

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team