PLX042224

GSE148641: Hypothalamic REV-ERBs Control Circadian Food Intake and Leptin Sensitivity [RNA-seq]

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Obesity occurs when energy expenditure is outweighed by food intake. Tuberal hypothalamic nuclei, including the arcuate nucleus (ARC), ventromedial nucleus (VMH), and dorsomedial nucleus (DMH), regulate feeding amount as well as energy expenditure. Here we report that mice lacking circadian nuclear receptors REV-ERBa and b in the tuberal hypothalamus (HDKO) gain excessive weight on an obesogenic diet due both to decreased energy expenditure and increased food consumption during the light phase. Moreover, rebound food intake after fasting is markedly increased in HDKO mice. Integrative transcriptomic and cistromic analyses revealed that such disruption in feeding behavior is due to perturbed REV-ERB-dependent leptin signaling in the ARC. Indeed, in vivo leptin sensitivity is impaired in HDKO mice on an obesogenic diet in a circadian manner. Thus, REV-ERBs play a crucial role in hypothalamic regulation of food intake and circadian leptin sensitivity in diet-induced obesity. SOURCE: Mitchell Lazar (lazar@pennmedicine.upenn.edu) - Lazar Lab University of Pennsylvania Perelman School of Medicine

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team