PLX181202

GSE148758: Tnfaip2/Exoc3 driven lipid metabolism is essential for stem cell differentiation & organ homeostasis [Mus musculus, 2]

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Lipid metabolism is recognized as a key process for stem cell maintenance and differentiation but genetic factors that instruct stem cell function by influencing lipid metabolism remain to be delineated. Here we identify Tnfaip2 as an inhibitor of reprogramming of mouse fibroblasts into induced pluripotent stem cells. Tnfaip2 knockout embryonic stem cells (ESCs) exhibit differentiation failure and knockdown of the planarian orthologue, Smed-exoc3, abrogates in vivo differentiation of somatic stem cells, tissue homeostasis, and regeneration. Tnfaip2 deficient ESCs fail to induce synthesis of cellular triacylglycerol (TAG) and lipid droplets (LD) coinciding with reduced expression of Vimentin (Vim) a known inducer of LD formation. Knockdown of Vim and Tnfaip2 act epistatically in enhancing cellular reprogramming of mouse fibroblasts. Similarly, planarians devoid of Smed-exoc3 displayed acute loss of TAGs. Supplementation of palmitic acid (PA) and palmitoyl-L-carnitine (a mitochondrial carrier of PA) restores the differentiation capacity of Tnfaip2 deficient ESCs as well as stem cell differentiation and organ maintenance in Smed-exoc3-depleted planarians. Together, these results identify a novel pathway, which is essential for stem cell differentiation and organ maintenance by instructing lipid metabolism. SOURCE: Philipp Koch Leibniz Institute on Aging - Fritz Lipmann Institute

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team