PLX078200

GSE149485: A simple and highly efficient method for multi-allelic CRISPR-Cas9 editing in primary cell cultures

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Background: CRISPR-Cas9-based technologies have revolutionized experimental manipulation of mammalian genomes. None-the-less, limitations of the delivery and efficacy of these technologies restrict their application in primary cells.; Aims: To create an optimized protocol for penetrant, reproducible, and fast targeted genome editing in cell cultures derived from primary cells, using patient-derived glioblastoma (GBM) stem-like cells (GSCs) and human neural stem/progenitor cells (NSCs) for proof-of-concept experiments.; Methods and results: We employed transient nucleofection of Cas9:sgRNA ribonucleoprotein complexes composed of chemically synthesized 2'-O-methyl 3phosphorothioate-modified sgRNAs and purified Cas9 protein. Insertion-deletion mutation (indel) frequency and size distribution were measured via computational deconvolution of Sanger sequencing trace data. We found that this optimized technique routinely allows for >90% indel formation in only 3 days, without the need to create clonal lines for simple loss-of-function experiments. Using Western blotting, we observed near-total protein loss of target genes in cell pools. Additionally, we found that this approach allows for the creation of targeted genomic deletions. By using RNA-seq in edited NSCs to assess gene expression changes resulting from knockout of tumor suppressors commonly altered in GBM, we also demonstrated the utility of this method for quickly creating a series of gene knockouts that allow for the study of oncogenic activities.; Conclusion: Our data suggest that this relatively simple method can be used for highly efficient and fast gene knockout, as well as for targeted genomic deletions, even in hyperdiploid cells (such as GSCs). This represents an extremely useful tool for the cancer research community when wishing to inactivate not only coding genes, but also non-coding RNAs, UTRs, enhancers, and promoters. This method can be readily applied to diverse cell types by varying the nucleofection conditions. SOURCE: Sonali Arora (sarora@fredhutch.org) - FHCRC

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team