PLX018067

GSE151669: CD28 Co-stimulation Drives Tumor-Infiltrating T Cell Glycolysis to Promote Inflammation

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Metabolic reprogramming dictates the fate and function of stimulated T cells, yet these pathways can be suppressed in T cells subjected to unique microenvironments, such as in a tumor. We previously showed that glycolytic and mitochondrial adaptations directly contribute to reduced effector functions of Renal Cell Carcinoma (RCC) CD8 tumor infiltrating lymphocytes (TIL). Here we define the role of these metabolic pathways in the activation and effector functions of RCC CD8 TIL. CD28 co-stimulation plays a key role to augment T cell activation and metabolism and is antagonized by inhibitory and checkpoint immunotherapy receptors CTLA4 and PD-1. While RCC CD8 TIL activated poorly when stimulated through the T cell receptor alone, addition of CD28 co-stimulation greatly enhanced activation, function, and proliferation. CD28 co-stimulation reprogrammed RCC CD8 TIL metabolism with increased glycolysis and mitochondrial oxidative metabolism, in part through upregulation of GLUT3. Mitochondria also became more fused, with higher membrane potential and overall mass. These phenotypes were dependent on glucose metabolism, as the glycolytic inhibitor 2-deoxyglucose both prevented changes to mitochondria and suppressed RCC CD8 TIL activation and function. These data show that CD28 co-stimulation can restore RCC CD8 TIL metabolism and function through rescue of T cell glycolysis that supports mitochondrial mass and activity. SOURCE: Jeff Rathmell (jeff.rathmell@vumc.org) - Jeff Rathmell Lab Vanderbilt University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team