PLX169643

GSE152181: Reduced left atrial cardiomyocyte PITX2 and elevated circulating BMP10 predict atrial fibrillation after ablation

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Background: Genomic and experimental studies suggest a role for PITX2 in atrial fibrillation (AF). To assess whether this association is relevant for recurrent AF in patients, we tested whether left atrial PITX2 affects recurrent AF after AF ablation.; Methods: mRNA concentrations of PITX2 and its cardiac isoform, PITX2c, were quantified in left atrial appendages (LAA) from patients undergoing thoracoscopic AF ablation, either in whole LAA tissue (n=83) or in LAA cardiomyocytes (n=52), and combined with clinical parameters to predict AF recurrence. Literature suggests bone morphogenetic protein 10 (BMP10) as a PITX2-repressed, atrial-specific, secreted protein. BMP10 plasma concentrations were combined with eleven cardiovascular biomarkers and clinical parameters to predict recurrent AF after catheter ablation in 359 patients.; Results: Reduced cardiomyocyte PITX2 concentrations, but not whole LAA tissue PITX2, were associated with AF recurrence after thoracoscopic AF ablation (16% decreased recurrence per 2-(Ct) increase in PITX2). RNA sequencing, qPCR and Western blotting confirmed BMP10 as one of most PITX2-repressed atrial genes. Left atrial size (hazard ratio per mm increase, HR [95%CI] 1.055 [1.028, 1.082], non-paroxysmal AF (HR 1.672 [1.206, 2.318]) and elevated BMP10 (HR 1.339 [CI 1.159, 1.546] per quartile increase) were predictive of recurrent AF. BMP10 outperformed eleven other cardiovascular biomarkers in predicting recurrent AF.; Conclusions: Reduced left atrial cardiomyocyte PITX2 and elevated plasma concentrations of the PITX2-repressed, secreted, atrial protein BMP10 identify patients at risk of recurrent AF after ablation. SOURCE: Jasmeet,S,Reyat University of Birmingham

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team