PLX301357

GSE153633: The role of Arid4b in mESC lineage commitment (RNA-Seq)

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Distinct cell types emerge from embryonic stem cells through a precise and coordinated execution of gene expression programs during lineage commitment. This is established by the action of lineage specific transcription factors along with chromatin complexes. Numerous studies focused on epigenetic factors that affect ESC self-renewal and pluripotency. However, the contribution of chromatin to lineage decisions at the exit from pluripotency has not been studied extensively. We have set out to identify chromatin related factors critical for differentiation towards mesodermal and endodermal lineages. Our results reveal a critical role for chromatin protein, Arid4b. Arid4b deficient mESCs are similar to wild-type mESCs in the expression of pluripotency factors and their self-renewal. However, we found that Arid4b loss results in defects in upregulation of meso/endodermal gene expression program. Arid4b is in the Sin3a complex along with Hdac1 and Hdac2. We identified a physical and functional interaction of Arid4b with Hdac1 rather than Hdac2. Arid4b deficiency leads to changes in the overall chromatin environment. Most notably, a subset of the genomic loci was found to gain H3K27Ac whereas several of the key developmental genes instead have increased H3K27me3 levels. Accordingly, the super-enhancers associated with meso/endoderm commitment were selectively reduced in arid4b cells. SOURCE: Jialiang Huang (jhuang@xmu.edu.cn) - Dana-Farber Cancer Institute

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team