PLX045178

GSE153935: Spatially discrete signalling niches regulate fibroblast heterogeneity in human lung cancer [single-cell RNA-seq]

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Fibroblasts are functionally heterogeneous cells, capable of promoting and suppressing tumour progression. Across cancer types, the extent and cause of this phenotypic diversity remains unknown. We used single-cell RNA sequencing and multiplexed immunohistochemistry to examine fibroblast heterogeneity in human lung and non-small cell lung cancer (NSCLC) samples. This identified seven fibroblast subpopulations: including inflammatory fibroblasts and myofibroblasts (representing terminal differentiation states), quiescent fibroblasts, proto-myofibroblasts (x2) and proto-inflammatory fibroblasts (x2). Fibroblast subpopulations were variably distributed throughout tissues but accumulated at discrete niches associated with differentiation status. Bioinformatics analyses suggested TGF-1 and IL-1 as key regulators of myofibroblastic and inflammatory differentiation respectively. However, in vitro analyses showed that whilst TGF-1 stimulation in combination with increased tissue tension could induce myofibroblast marker expression, it failed to fully re-capitulate ex-vivo phenotypes. Similarly, IL-1 treatment only induced upregulation of a subset of inflammatory fibroblast marker genes. In silico modelling of ligand-receptor signalling identified additional pathways and cell interactions likely to be involved in fibroblast activation, This highlighted a potential role for IL-11 and IL-6 (among other ligands) in myofibroblast and inflammatory fibroblast activation respectively. This analysis provides valuable insight into fibroblast subtypes and differentiation mechanisms in NSCLC. SOURCE: Sara Waise (s.waise@soton.ac.uk) - Experimental Pathology Group University of Southampton

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team