PLX115007

GSE154340: SMALL EXTRACELLULAR VESICLE REGULATION OF MITOCHONDRIAL DYNAMICS REPROGRAMS A HYPOXIC TUMOR MICROENVIRONMENT

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

The crosstalk between tumor cells and the adjacent normal epithelium contributes to cancer progression, but its regulators have remained elusive. Here, we show that breast cancer cells maintained in hypoxia release small extracellular vesicles (sEV) that activate mitochondrial dynamics, stimulate mitochondrial movements and promote organelle accumulation at the cortical cytoskeleton in normal mammary epithelial cells. This results in Akt activation, membrane focal adhesion turnover and increased epithelial cell migration. RNA-Seq profiling identified Integrin-Linked Kinase (ILK) as the most upregulated pathway in sEV-treated epithelial cells and genetic or pharmacologic targeting of ILK reversed mitochondrial reprogramming and suppressed sEV-induced cell movements. In a three-dimensional model of mammary gland morphogenesis, sEV treatment induced hallmarks of malignant transformation, with deregulated cell death/cell proliferation, loss of apical-basal polarity and appearance of epithelial-to-mesenchymal transition (EMT) markers. Therefore, sEV released by hypoxic breast cancer cells reprogram mitochondrial dynamics and induce oncogenic changes in a normal mammary epithelium SOURCE: Priyankara,J,Wickramasinghe (priyaw@wistar.org) - Genomics The Wistar Institute

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team