PLX229780

GSE155081: Single cell RNA-seq analysis reveals compartment-specific heterogeneity and plasticity of microglia

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Microglia are heterogeneous and ubiquitous CNS-resident macrophages that maintain homeostasis of neural tissues and protect them from pathogen attacks. Yet, their differentiation in different compartments remains elusive. We performed single cell RNA-seq (scRNA-seq) analysis to compare the transcriptomes of microglia in adult mouse(C57/Bl) brains and spinal cords to identify microglial subtypes in these CNS compartments.Cortical microglia from 2-month mice consisted of a predominant population of the homeostatic subtype (HOM-M) and a small population (4%) of the inflammatory subtype (IFLAM-M), while spinal microglia consisted of HOM-M and IFLAM-M subtype. Comparison of cortical and spinal microglia at 2, 4 and 8 months revealed consistently a higher composition of the IFLAM-M subtype in the spinal cord. At 8-month, cortical microglia differentiated a small new subtype with interferon response phenotypes (INF-M), while spinal microglia polarized toward a proinflammatory phenotype, as indicated by the increase of microglia expressing IL-1. To further characterize the differential plasticity of cortical and spinal microglial heterogeneity, we determined the microglial transcriptomes from HIV-1 gp120 transgenic (Tg) mice, a model of HIV-associated neurological disorders. Compared with wild-type (Wt) cortical microglia, the gp120Tg cortical microglia had three new subtypes, with signatures of interferon I response (INF-M), cell proliferation (PLF-M), and myelination or demyelination (MYE-M) respectively; while INF-M and PLF-M subtypes presented at all ages, the MYE-M only at 4-month. In contrast, only the INF-M subtype was observed in the spinal microglia from 2-and 4-month gp120tg mice. Bioinformatic analysis of regulated molecular pathways of individual microglial subtypes indicated that gp120 more severely impaired the biological function of microglia in cortices than in the spinal cord. The results collectively reveal differential heterogeneity and plasticity of cortical and spinal microglia, and suggest functional differentiation of microglia in different CNS compartments. SOURCE: Shao-Jun Tang (shtang@utmb.edu) - Unviersity of Texas Medical Branch at Galveston

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team