PLX183403

GSE157609: IFI16 functions as an antiviral factor during influenza virus infection by binding viral RNA and enhancing the RIG-I signaling

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

RIG-I is thought to be the most important sensor of influenza virus infection and plays critical roles in the recognition of cytoplasmic dsRNA and activation of type I IFNs and initiates the innate antiviral immune responses. How the binding of viral RNA to and activation of RIG-I are regulated remains enigmatic. Here, by an affinity proteomics approach with viral RNA as the bait, we found that IFI16, previously identified as a DNA sensor, was significantly induced both in vitro and in vivo during influenza virus infection. Using an IFI16 knockout cells and p204-deficient mice model, we demonstrated that IFI16 enhanced RIG-I-mediated production of type I IFNs and thereby inhibited viral replication during influenza virus infection. Furthermore, we showed that IFI16 regulated the RIG-I signaling by enhancing its transcriptional expression through recruitment of RNA Pol II to the RIG-I promoter. We also verified that IFI16 directly interacted with both viral RNA by HINa domain and associated with RIG-I through its PYRIN domain as well as promoted influenza virus-induced K63-linked polyubiquitination of RIG-I. In addition, we found that IFI16 lost its ability to inhibit viral replication in the absence of RIG-I in virus-infected cells. These results indicate that IFI16 is a key regulator of the RIG-I signaling during antiviral innate immune responses, which highlights a novel mechanism of IFI16 in IAV and other RNA viruses infection, expands our knowledge in antiviral innate immunity, and suggests its possible use as a new strategies to manipulate antiviral responses. SOURCE: zhimin jiang (jiang_zm@cau.edu.cn) - China agriculture university

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team