PLX027220

GSE40823: RNA-Seq profiling unveils a non-canonical Wnt signalling signature in pancreas versus liver fate decision

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Understanding how distinct cell types arise from common multipotent progenitor cells is a major quest in stem cell biology. This knowledge will aid in the targeted differentiation and growth of stem cells, but also in the discovery of the basis of cellular plasticity and of how tissue programming can be controlled. The liver and pancreas share many aspects of their early development, being both specified in the same region of the endoderm, and, possibly, originating from a common progenitor. However, how pancreas versus liver cell fate decision occurs during embryogenesis and the molecular basis of this cellular plasticity are poorly understood. Here, we use RNA-Seq to define the molecular identity of liver and pancreas progenitors directly in mouse embryos and to investigate the mechanisms regulating the emergence of liver or pancreas as alternative fates from the endoderm. Progenitor cell-specific RNA was obtained from mouse Prox1-EGFP-labeled embryonic cells isolated by FACS at distinct developmental stages, before and after the onset of organogenesis. By integrating the temporal and spatial gene expression profiles, we found mutually exclusive signaling signatures in hepatic and pancreatic progenitors. Importantly, we identified the non-canonical Wnt pathway as a potential developmental regulator of the pancreas versus liver fate decision, being expressed in the foregut endoderm, before the cell fate choice is made, and then maintained in pancreas progenitors but absent in hepatic progenitors. Moreover, when assayed in Xenopus embryos, the non-canonical Wnt pathway is able to promote pancreatic fate and repress hepatic fate in the endoderm, suggesting an ancient mechanism for controlling pancreas versus liver fate choice. We expect that this knowledge will be key to formulate reprogramming strategies to convert adult hepatic cells into pancreatic cells as a cell-based therapeutic approach for diabetes. SOURCE: Francesca,M.,Spagnoli (francesca.spagnoli@mdc-berlin.de) - Molecular and Cellular Basis of Embryonic Development Max Delbrück Center for Molecular Medicine

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team