PLX064646

GSE46953: Default DNA Methylation is Preceded by Broad, Low-Level Transcription in Fetal Male Germ Cells and Is Inversely Patterned by Dynamic H3K4 Methylation (RNA-Seq)

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

To understand what dictates the emerging patterns of de novo DNA methylation, we mapped DNA methylation, chromatin, and transcription changes in purified fetal mouse germ cells using MIRA-chip, ChIP-chip, and strand-specific RNA-seq, respectively. De novo methylation occurred without any apparent trigger from preexisting repressing chromatin marks but was preceded by broad, low-level transcription along the entire genome in prospermatogonia. Only distinct short sequences remained unmethylated, precisely aligned with constitutive or emerging peaks of H3K4me2. Establishment of methylation at differentially methylated regions (DMRs) of imprinted genes, CpG islands, and IAPs followed these same default rules. Transcription run-through occurred at paternal DMRs with no- or diminishing H3K4me2 peaks. Maternal DMRs remained unmethylated among highly methylated DNA at precisely aligned H3K4me2 peaks with transcription initiating at least in one strand. Our results suggest that the pattern of de novo DNA methylation in prospermatogonia is dictated by opposing actions of broad, low-level transcription and dynamic patterns of active chromatin. SOURCE: Xiwei Wu (xwu@coh.org) - City of Hope National Medical Center

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team