PLX148044

GSE50809: Temporally defined neocortical translation and polysome assembly is determined by the RNA-binding protein, Hu antigen R

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Precise spatiotemporal control of mRNA translation machinery is essential to proper development of highly complex systems like the neocortex. Here, we show that an RNA-binding protein, Hu antigen R (HuR), regulates both neocorticogenesis and specificity of neocortical translation machinery in a developmental stagedependent manner in mice. Neocortical absence of HuR alters the phosphorylation states of the initiation and elongation factors of the core translation machinery. In addition, HuR regulates the temporally specific positioning of functionally related mRNAs into the active translation sites, the polysomes. HuR also determines the specificity of neocortical polysomes by defining their combinatorial composition of ribosomal proteins and initiation and elongation factors. For some of the HuR-dependent proteins, the association with polysomes depends on the eIF2 alpha kinase 4 (eIF2ak4), which associated with HuR in prenatal developing neocortices. Finally, we found that deletion of HuR prior to embryonic day 10 (E10) disrupts both neocortical lamination and formation of the main neocortical commissure, the corpus callosum. Our study identifies a crucial role for HuR in neocortical development as a translational gatekeeper for functionally related mRNA subgroups and polysomal protein specificity. SOURCE: Ronald,P.,Hart (rhart@rci.rutgers.edu) - Rutgers University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team